์ฐพ์•„๋ณด๊ธฐ

2020๋…„ 11์›” 21์ผ ํ† ์š”์ผ

Calculas Easy Made_CH11

11-2

a.$y=ASin(\theta-\frac{\pi}{2})$

A, th=symbols("A theta")
y=A*sin(th-pi/2)
y
−Acos(๐œƒ)

dydth=y.diff(th)
dydth
Asin(๐œƒ)

b.$y=sin^2(\theta)$

y=sin(th)**2
y.diff(th)
2sin(๐œƒ)cos(๐œƒ)

c.$y=sin(2\theta)$

y=sin(2*th)
y.diff(th)
2cos(2๐œƒ)

d.$y=sin^3(\theta)$

y=sin(th)**3
y.diff(th)
3sin2(๐œƒ)cos(๐œƒ)

e.$y=sin(3\theta)$

y=sin(3*th)
y.diff(th)
3cos(3๐œƒ)

11-2

sin(ฮธ)·cos(ฮธ)๊ฐ€ ๊ทน๋Œ€๊ฐ€ ๋˜๋Š” ฮธ๋ฅผ ๋ฐœ๊ฒฌํ•˜์‹œ์˜ค.

theta=symbols('theta')
y=sin(theta)*cos(theta)
dy=diff(y, theta)
dy
−sin2(ฮธ)+cos2(ฮธ)

m=solve(dy)
m
[-3*pi/4, -pi/4, pi/4, 3*pi/4]

ddy=diff(y, theta, 2)
ddy
−4sin(ฮธ)cos(ฮธ)

sign={}
for i in sol:
 sign[i]=dy2dth.subs(th, i)
sign
{-3*pi/4: -2, -pi/4: 2, pi/4: -2, 3*pi/4: 2}

print(f'์ตœ๋Œ€๊ฐ’: {y.subs(th, pi/4)}')
์ตœ๋Œ€๊ฐ’: 1/2

print(f'์ตœ์†Œ๊ฐ’: {y.subs(th, 3*pi/4)}')
์ตœ์†Œ๊ฐ’: -1/2

11-3

n, t=symbols("n t")
y=cos(2*pi*n*t)/(2*pi)
y
$\frac{\cos{\left(2 \pi n t \right)}}{2 \pi}$

y.diff(t)
$- n \sin{\left(2 \pi n t \right)}$

11-4

# 4
a, x=symbols("a, x")
y=sin(a**x)
y
sin(ax)

y.diff(x)
axlog(a)cos(ax)

11-5

x=symbols("x")
y=log(cos(x))
y
log(cos(x))

y.diff(x)
$−\frac{sin(x)}{cos(x)}

u=symbols('u')
u1=cos(x)
v=log(u)
dudx=u1.diff(x)
dudx
−sin(x)

dvdu=v.diff(u)
dvdu
$\frac{1}{u}$

dvdu=dvdu.subs(u, u1)
dvdu
$\frac{1}{cos(x)}$

dvdx=dvdu*dudx
dvdx
$−\frac{sin(x)}{cos(x)}$

11-6

x=symbols('x')
y=18.2*sin(x+26)
y
18.2sin(x+26)
y.diff(x)
18.2cos(x+26)

11-7

y = 100sin(ฮธ − 15°)์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ์ž‘์„ฑํ•˜๊ณ  ฮธ=75°์—์„œ ์ตœ๋Œ€ ๊ธฐ์šธ๊ธฐ์˜ ์ ˆ๋ฐ˜์ž„์„ ๋ณด์ด์‹œ์˜ค.

sympy ๋“ฑ python์—์„œ ์‚ฌ์šฉ๋˜๋Š” ์‚ผ๊ฐํ•จ์ˆ˜์— ๊ด€๋ จ๋œ ๋Œ€๋ถ€๋ถ„์˜ ํ•จ์ˆ˜๋Š” ๊ฐ๋„(degree)๊ฐ€ ์•„๋‹Œ ๋ผ๋””์•ˆ(radian)์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ด ๋ฌธ์ œ์˜ ๊ฐ๋„๋ฅผ ๋ผ๋””์•ˆ์œผ๋กœ ์ „ํ™˜ํ•˜์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค.

a, b=np.deg2rad(15), np.deg2rad(75)
a, b
(0.2617993877991494, 1.3089969389957472)

th=symbols('theta')
y=100*sin(th-a)
y
100sin(ฮธ−0.261799387799149)

#๋ฌธ์ œ๋Š” ๊ทธ๋ž˜ํ”„์˜ ๊ธฐ์šธ๊ธฐ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋ฏ€๋กœ sl์ด ๊ธฐ์ค€์ด ๋ฉ๋‹ˆ๋‹ค.
sl=y.diff(th)
sl
100cos(ฮธ−0.261799387799149)

sol=solve(sl.diff(th), th)
sol
[0.261799387799149, 3.40339204138894]

dsl2dth=sl.diff(th, 2)
sign={}
val={}
for i in sol:
 sign[i]=dsl2dth.subs(th, i)
 val[i]=sl.subs(th, i)
sign
{0.261799387799149: -100.000000000000, 3.40339204138894: 100.000000000000}

val
{0.261799387799149: 100.000000000000, 3.40339204138894: -100.000000000000}

sl.subs(th, b)#75๋„์—์„œ์˜ ๊ธฐ์šธ๊ธฐ: ์ตœ๋Œ€ 100์˜ ๋ฐ˜
50.0

11-8

th=symbols('theta')
y=sin(th)*cos(2*th)
y
sin(ฮธ)cos(2ฮธ)

y.diff(th)
−2sin(ฮธ)sin(2ฮธ)+cos(ฮธ)cos(2ฮธ)

11-9

a, m, n, th=symbols('a m n theta')
y=a*tan(th**n)**m
y
$a \tan^{m}{\left(\theta^{n} \right)}$
y.diff(th)
$\frac{a m n \theta^{n} \left(\tan^{2}{\left(\theta^{n} \right)} + 1\right) \tan^{m}{\left(\theta^{n} \right)}}{\theta \tan{\left(\theta^{n} \right)}}$

11_11

a

a, b, x=symbols("a b x", real=True)
y=a*x/(x+b)
y
$\frac{a x}{b + x}$
dydx=y.diff(x)
dydx
$- \frac{a x}{\left(b + x\right)^{2}} + \frac{a}{b + x}$

simplify(dydx)
$\frac{ab}{(b+x)^2}$

์œ„ ๋ฏธ๋ถ„๊ณ„์ˆ˜์˜ ํ˜•ํƒœ์—์„œ ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด 0๊ฐ€ ๋˜๋Š” ๊ทน์ ์€ ์กด์žฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ทน๋Œ€๊ฐ’, ๊ทน์†Œ๊ฐ’์€ ์กด์žฌํ•˜์ง€ ์•Š์œผ๋ฉฐ x=30์—์„œ์˜ ๋ฏธ๋ถ„๊ณ„์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

solve(dydx, x)
[]
simplify(dydx.subs(x, 30))
$\frac{a b}{\left(b + 30\right)^{2}}$

b

a, b, x=symbols("a b x", real=True)
y=a*(1-exp(-x/b))
y
๐‘Ž(1−๐‘’−๐‘ฅ๐‘)

dydx=y.diff(x)
dydx
๐‘Ž๐‘’−๐‘ฅ๐‘๐‘

solve(dydx, x)
[]
dydx.subs(x, 30)
๐‘Ž๐‘’−30๐‘๐‘

c

a, b, x=symbols("a b x", real=True)
y=a/90*atan(b/x)
y
$\frac{a \operatorname{atan}{\left(\frac{b}{x} \right)}}{90}$
dydx=y.diff(x)
dydx
$- \frac{a b}{90 x^{2} \left(\frac{b^{2}}{x^{2}} + 1\right)}$
solve(dydx, x)
[]
dydx.subs(x, 30)
$- \frac{a b}{81000 \left(\frac{b^{2}}{900} + 1\right)}$

15

th=symbols("theta", Real=True)
y=th*cos(th)
y
$\theta \cos{\left(\theta \right)}$
dydth=y.diff(th)
dydth
$- \theta \sin{\left(\theta \right)} + \cos{\left(\theta \right)}$
sol=solveset(dydth, th, Interval(-pi, pi))
sol
$\left\{\theta \mid \theta \in \left[- \pi, \pi\right] \wedge - \theta \sin{\left(\theta \right)} + \cos{\left(\theta \right)} = 0 \right\}$

์œ„ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ๋ฏธ๋ถ„๊ณ„์ˆ˜๊ฐ€ 0์ด๋˜๋Š” ์กฐ๊ฑด์€ $cot(\theta)=\theta$ ์ž…๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ์ด ์‹๊ณผ ๋ฏธ๋ถ„ ์‹์˜ ๊ทธ๋ž˜ํ”„์ž…๋‹ˆ๋‹ค.

๋Œ“๊ธ€ ์—†์Œ:

๋Œ“๊ธ€ ์“ฐ๊ธฐ

CalculusMadeEasy_CH1

1-6 a=np.array([[1],[2],[3]]) la.norm(a) 3.7416573867739413 b=np.array([[-1],[-3],[-4]]) la.norm(b) 5.0990195135927845 c=np.array([[...